Here is a chocolate bar

Here is a chocolate bar

Unfortunately, one piece is poisoned

Pick a piece – take everything above and to the right

Pick a piece – take everything above and to the right

Try not to eat the poisoned piece

Over to Neel

Tiny Chomp

Who feels ill tomorrow?

Combinatorial Games

Game board and rules

Two player

No Chance

Turn-based

Terminates in finite steps

No hidden information

Fundamental Theorem

Either the first player or the second can force a win – not both

Say player 1 takes the top right square

Say player 1 takes the top right square

Either this is a winning first move or it is not

Say player 1 takes the top right square

Either this is a winning first move or it is not

If losing move, 2nd player can respond with a winning move

Say player 1 takes the top right square

Either this is a winning first move or it is not

If losing move, 2nd player can respond with a winning move

But, no matter where the 2nd player chomps, player 1 had access to it

either by taking top right or some other piece

Say player 1 takes the top right square

Either this is a winning first move or it is not

If losing move, 2nd player can respond with a winning move

But, no matter where the 2nd player chomps, player 1 had access to it

Time for some Hackenbush

Wait, is it all Nim?

Wait, is it all Nim?

Sprague – Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

Wait, is it all Nim?

Sprague – Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$G = n$$

 $13 \oplus 19 \oplus 10$

 $13 \oplus 19 \oplus 10$

 $= (8 + 4 + 1) \oplus (16 + 2 + 1) \oplus (8 + 2)$

 $13 \oplus 19 \oplus 10$

$$=(8 + 4 + 1) \oplus (16 + 2 + 1) \oplus (8 + 2)$$

 $13 \oplus 19 \oplus 10$

$$=(8 + 4 + 1) \oplus (16 + 2 + 1) \oplus (8 + 2)$$

4 + 16 = 20

G = *20

The Hackenbush Homestead

Time for another game!

Corner the Queen

Corner the Queen

*	 	\checkmark	~	~	<	<

~							
~							
~							
~							
<							
<							
<							
\star	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark

 							>
\checkmark						>	
 					>		
~				~			
~			~				
~	?	~					
	~	?					
*	~	~	~	~	~	\checkmark	~

~							~
~						>	
 					>		
~				~			
~			>				
~	0	~					
~	~	0					
*	~	~	~	~	~	\checkmark	~

~	~	~				~	~
\checkmark	~	~			>	~	<
~	>	~		>	>	~	
\checkmark	>	>	>	>	>		
\checkmark	<	~	>	~			
\checkmark	0	>	>	>	>	>	>
~	~	0	>	~	~	~	~
*	~	~	>	~	~	~	~

~	\checkmark	~				~	~
~	>	>			>	>	<
~	>	>	?	>	>	>	
\checkmark	>	>	>	>	>		
~	>	>	>	>	?		
\checkmark	0	>	>	>	>	>	>
~	~	0		~	~	~	~
*	~	>	>	~	~	~	~

~	~	~	~	0	~	~	~
\checkmark	>	>	>	>	>	>	<
~	>	>	0	>	>	>	<
\checkmark	>	>	>	>	>	>	0
~	>	>	>	>	0	>	<
~	0	>	>	>	>	>	>
~	>	0	>	>	>	>	~
*	~	>	>	>	>	>	~

Wythoff Nim

Played with 2 rows of counters

Wythoff Nim

Played with 2 rows of counters

Can take from both rows if take same number from both

Wythoff Nim

Played with 2 rows of counters

Can take from both rows if take same number from both

Take at least one counter – can empty a row

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

1, 1, 2, 3, 5, 8, 13, 21, ...

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

(1, 2), (3, 5), (8, 13), ...

1, 1, 2, 3, 5, 8, 13, 21, ...

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

(1, 2), (3, 5), (8, 13), ...

(4, 7), (11, 18), ...

(6, 10), (16, 26), ...

1, 1, 2, 3, 5, 8, 13, 21, ...

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

(1, 2), (3, 5), (8, 13), ...

(4, 7), (11, 18), ...

(6, 10), (16, 26), ...

1, 1, 2, 3, 5, 8, 13, 21, ...

A	1	3	4	6	8	9	11	12	14
В	2	5	7	10	13	15	18	20	23

(1, 2), (3, 5), (8, 13), ...

(4, 7), (11, 18), ...

(6, 10), (16, 26), ...

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers
Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, 17 = 13 + 3 + 1

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, 17 = 13 + 3 + 1

21	13	8	5	3	2	1

1, 2, 3, 5, 8, 13, 21, ...

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, 17 = 13 + 3 + 1

21	13	8	5	3	2	1
0	1	0	0	1	0	1

1, 2, 3, 5, 8, 13, 21, ...

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, 17 = 13 + 3 + 1

21	13	8	5	3	2	1
0	1	0	0	1	0	1

1, 2, 3, 5, 8, 13, 21, ...

(1, 2), (3, 5), (8, 13), ...

21	13	8	5	3	2	1

(1, 2), (3, 5), (8, 13), ...

(1, 10), (100, 1000), (1000, 10000), ...

21	13	8	5	3	2	1

(4,7), (11,18), ...

21	13	8	5	3	2	1

(4, 7), (11, 18), ...

(101,1010), (10100,101000), ...

21	13	8	5	3	2	1

(6, 10), (16, 26), ...

(101,1010), (10100,101000), ...

21	13	8	5	3	2	1

A	1	3	4	6	8	9	11	12	14
B	2	5	7	10	13	15	18	20	23

(1,2), (3,5), (4,7), (6,10), (8,13), ... (1,10), (100,1000), (101,1010), (1001,10010), (10000, 100000), ...

21	13	8	5	3	2	1

A	1	3	4	6	8	9	11	12	14
B	2	5	7	10	13	15	18	20	23

(1,2), (3,5), (4,7), (6,10), (8,13), ... (1,10), (100,1000), (101,1010), (1001,10010), (10000, 100000), ...

A rightmost 1 in even position

21	13	8	5	3	2	1

Write in terms of Fibonacci numbers

	21	13	8	5	3	2	1
10	0	0	1	0	0	1	0
15	0	1	0	0	0	1	0

Are these an (A, B) pair?

	21	13	8	5	3	2	1
10	0	0	1	0	0	1	0
15	0	1	0	0	0	1	0

Which row do we take from?

	21	13	8	5	3	2	1
10	0	0	1	0	0	1	0
15	0	1	0	0	0	1	0

Let's say the second

Let's say the second

Can we make (10001,100010)?

Let's say the second

Can we make (10001,100010)?

Nope, 10001 is 14

How about the first?

	21	13	8	5	3	2	1
10	0	0	1	0	0	1	0
15	0	1	0	0	0	1	0

How about the first?

Can we make (10010,100100)?

How about the second?

Can we make (10010,100100)?

100100 is 9 so move a step left

A game

A set of positions each allowing a set of moves

A game

A set of positions each allowing a set of moves

A game

A set of positions each allowing a set of moves

Game ends if the current player cannot move

N and P positions

Terminal positions are P

N and P positions

Terminal positions are P

N and P positions

N if it has a P child

P if all children are N

N and P positions

Let's Play!

Simultaneously play

Simultaneously play

Both are P positions

Simultaneously play

Both are P positions

Any move is to N

Both are P positions

Any move is to N

Make a move in same game to restore Property

Both are P positions

Any move is to N

Make a move in same game to restore Property

One N and one P position

One N and one P position

Move the N game to a P position

Both are P positions

Move the N game to a P position

Now both are P positions

Both are P positions

Move the N game to a P position

Now both are P positions

Equivalent games

Two Games, G, H, are equivalent if

o(G+K)=o(H+K)

for all games K

where o() is the outcome class of the game

Equivalent games

Two Games, G, H, are equivalent if

o(G+K) = o(H+K)

for all games K

where o() is the outcome class of the game

Any finite impartial game is equivalent to a single Nim heap

G = n

Any finite impartial game is equivalent to a single Nim heap

$$G = n$$

Any finite impartial game is equivalent to a single Nim heap

Any finite impartial game is equivalent to a single Nim heap

* *n*

Any finite impartial game is equivalent to a single Nim heap

Apple Tree

Apple Tree

Apple Tree

The Hackenbush Homestead

•

