Chomp

Here is a chocolate bar

Chomp

Here is a chocolate bar

Unfortunately, one piece is poisoned

Chomp

Pick a piece - take everything above and to the right

Chomp

Pick a piece - take everything above and to the right

Try not to eat the poisoned piece

Over to Neel

Tiny Chomp

Who feels ill tomorrow?

Combinatorial Games

Game board and rules

Two player

Turn-based
No hidden information

No Chance

Terminates in finite steps

Fundamental Theorem

Either the first player or the second can force a win - not both

First player wins chomp

First player wins chomp

Say player 1 takes the top right square

First player wins chomp

Say player 1 takes the top right square

Either this is a winning first move or it is not

First player wins chomp

Say player 1 takes the top right square

Either this is a winning first move or it is not

If losing move, $2^{\text {nd }}$ player can respond with a winning move

First player wins chomp

Say player 1 takes the top right square

Either this is a winning first move or it is not
If losing move, $2^{\text {nd }}$ player can respond with a winning move

But, no matter where the $2^{\text {nd }}$ player chomps, player 1 had access to it

First player wins chomp

either by taking top right or some other piece

Say player 1 takes the top right square

Either this is a winning first move or it is not
If losing move, $2^{\text {nd }}$ player can respond with a winning move

But, no matter where the $2^{\text {nd }}$ player chomps, player 1 had access to it

Time for some Hackenbush

4

Wait, is it all Nim?

Wait, is it all Nim?

Sprague - Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

Wait, is it all Nim?

Sprague - Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
G=* n
$$

Who wins Nim with $\{13,19,10\} ?$
$13 \oplus 19 \oplus 10$

Who wins Nim with $\{13,19,10\} ?$

$13 \oplus 19 \oplus 10$

$$
=(8+4+1) \oplus(16+2+1) \oplus(8+2)
$$

Who wins Nim with $\{13,19,10\} ?$
$13 \oplus 19 \oplus 10$
$=(\phi+4+\not p) \oplus(16+2 \alpha+\not p) \oplus(\phi+\not p)$

Who wins Nim with $\{13,19,10\} ?$

$13 \oplus 19 \oplus 10$

$$
=(\phi+4+\not p) \oplus(16+\not p+p) \oplus(\phi+\not p)
$$

$$
4+16=20
$$

$$
G=* 20
$$

$\operatorname{MEX}\{2,2,0\}=1$

The Hackenbush Homestead

Time for another game!

Corner the Queen

Corner the Queen

\checkmark							
\checkmark							
\checkmark							
\checkmark							
\checkmark							
\checkmark							
\checkmark							
\star	\checkmark						

\checkmark							\checkmark
\checkmark						\checkmark	
\checkmark					\checkmark		
\checkmark				\checkmark			
\checkmark			\checkmark				
\checkmark		\checkmark					
\checkmark	\checkmark						
*	\checkmark						

\checkmark							\checkmark
\checkmark						\checkmark	
\checkmark					\checkmark		
\checkmark				\checkmark			
\checkmark			\checkmark				
\checkmark	$?$	\checkmark					
\checkmark	\checkmark	$?$					
\star	\checkmark						

v							v
v						v	
v					v		
v				v			
v			v				
v	O	v					
v	v	O					
\star	v						

\checkmark		\checkmark					\checkmark
\checkmark		\checkmark				\checkmark	\checkmark
\checkmark		\checkmark			\checkmark	\checkmark	
\checkmark		\checkmark		\checkmark	\checkmark		
\checkmark		\checkmark	\checkmark	\checkmark			
\checkmark	\bigcirc	\checkmark	\checkmark				
\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\checkmark							

v	v	v				v	v
v	v	v			v	v	v
v	v	v		v	v	v	
v	v	v	v	v	v		
v	v	v	v	v			
v	0	v	v	v	v	v	v
v	v	0	v	v	v	v	v
\star	v						

v	v	v				v	v
v	v	v			v	v	v
v	v	v	$?$	v	v	v	
v	v	v	v	v	v		
v	v	v	v	v	$?$		
v	0	v	v	v	v	v	v
v	v	0	v	v	v	v	v
\star	v						

v	v	v	v	0	v	v	v
v							
v	v	v	0	v	v	v	v
v	0						
v	v	v	v	v	0	v	v
v	0	v	v	v	v	v	v
v	v	O	v	v	v	v	v
\star	v						

$(4,8)$	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark
$(3,5)$	\checkmark							
	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark
	\checkmark	\bigcirc						
$(1,2)$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark
	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$(0,0)$	\checkmark	\checkmark	\bigcirc	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	\star	\checkmark						
	$(1,2)$					$(3,5)$		$(4,8)$

Wythoff Nim

Played with 2 rows of counters

Wythoff Nim

Played with 2 rows of counters

Can take from both rows if take same number from both

Wythoff Nim

Played with 2 rows of counters

Can take from both rows if take same number from both

Take at least one counter - can empty a row

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

Fibonnacci numbers appear
$1,1,2,3,5,8,13,21, \ldots$

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

$(1,2),(3,5),(8,13), \ldots$

Fibonnacci numbers appear
$1,1,2,3,5,8,13,21, \ldots$

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

$(1,2),(3,5),(8,13), \ldots$

$(4,7),(11,18), \ldots$
$(6,10),(16,26), \ldots$

Fibonnacci numbers appear
$1,1,2,3,5,8,13,21, \ldots$

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

$(1,2),(3,5),(8,13), \ldots$

$(4,7),(11,18), \ldots$
$(6,10),(16,26), \ldots$

Fibonnacci numbers appear

A	1	3	4	6	8	9	11	12	14
B	2	5	7	10	13	15	18	20	23

$(1,2),(3,5),(8,13), \ldots$

$(4,7),(11,18), \ldots$
$(6,10),(16,26), \ldots$

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, $17=13+3+1$

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, $17=13+3+1$

21	13	8	5	3	2	1

$1,2,3,5,8,13,21, \ldots$

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, $17=13+3+1$

21	13	8	5	3	2	1
0	1	0	0	1	0	1

$1,2,3,5,8,13,21, \ldots$

Determining a Safe Play

Any natural number can be written uniquely as a sum of non-consecutive Fibonacci (Pingala) numbers

For example, $17=13+3+1$

21	13	8	5	3	2	1
0	1	0	0	1	0	1

$1,2,3,5,8,13,21, \ldots$

Determining a Safe Play

$(1,2),(3,5),(8,13), \ldots$

Determining a Safe Play

$(1,2),(3,5),(8,13), \ldots$
$(1,10),(100,1000),(1000,10000), \ldots$

Determining a Safe Play

$(4,7),(11,18), \ldots$

Determining a Safe Play

$(4,7),(11,18), \ldots$
(101,1010), (10100,101000), ...

21	13	8	5	3	2	1

Determining a Safe Play

$(6,10),(16,26), \ldots$
(101,1010), (10100,101000), ...

Determining a Safe Play

	1	3	4	6	8	9	11	12	14
	2	5	7	10	13	15	18	20	23

$(1,2),(3,5)$,
$(4,7)$,
$(6,10)$,
$(8,13), \ldots$
$(1,10),(100,1000),(101,1010),(1001,10010),(10000,100000), \ldots$

21	13	8	5	3	2	1

Determining a Safe Play

1	3	4	6	8	9	11	12	14
2	5	7	10	13	15	18	20	23

$(1,2),(3,5)$,
$(4,7)$,
$(6,10)$,
$(8,13), \ldots$
$(1,10),(100,1000),(101,1010),(1001,10010),(10000,100000), \ldots$
A rightmost 1 in even position

21	13	8	5	3	2	1

Is $(10,15)$ safe?

Is $(10,15)$ safe?

Write in terms of Fibonacci numbers

									㖓
									1
$\underline{0}$									

Is $(10,15)$ safe?

21	13	8	5	3	2	1
10	0	0	1	0	0	1
15	0	1	0	0	0	1

Is $(10,15)$ safe?

Are these an (A, B) pair?

21	13	8	5	3	2	1
10	0	0	1	0	0	1
15	0	1	0	0	0	1

Is $(10,15)$ safe?

Which row do we take from?

21	13	8	5	3	2	1
10	0	0	1	0	0	1
15	0	1	0	0	0	1

Is $(10,15)$ safe?

Let's say the second

Is $(10,15)$ safe?

Let's say the second

Can we make $(10001,100010) ?$

Is $(10,15)$ safe?

Let's say the second

Can we make $(10001,100010) ?$
Nope, 10001 is 14

Is $(10,15)$ safe?

How about the first?

21	13	8	5	3	2	1
10	0	0	1	0	0	1
15	0	1	0	0	0	1

Is $(10,15)$ safe?

How about the first?

Can we make (10010,100100)?

Is $(10,15)$ safe?

How about the second?

Can we make (10010,100100)?

100100 is 9 so move a step left

Recap

A game

A set of positions each allowing a set of moves

A game

A set of positions each allowing a set of moves

A game

A set of positions each allowing a set of moves

Game ends if the current player cannot move

N and P positions

Terminal positions are P

N and P positions
Terminal positions are P

N and P positions

N if it has a P child

N and P positions

P if all children are N

N and P positions

P if all children are N

Let's Play!

Simultaneously play

Simultaneously play

Both are P positions

Simultaneously play

Both are P positions

Any move is to N

Simultaneously play

Both are P positions

Any move is to N

Make a move in same game to restore Property

Simultaneously play

Both are P positions

Any move is to N
Make a move in same game to restore Property

$$
P+P=P
$$

0
0
0

0
\bullet
0

Simultaneously play

Simultaneously play

One N and one P position

Simultaneously play

One N and one P position

Move the N game to a P position

Simultaneously play

Both are P positions

Move the N game to a P position
Now both are P positions

Simultaneously play

Both are P positions

Move the N game to a P position
Now both are P positions

$$
\begin{gathered}
\mathrm{N}+\mathrm{P}=\mathrm{N} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered} \begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

Equivalent games

Two Games, G, H, are equivalent if

$$
o(G+K)=o(H+K)
$$

for all games K
where $o()$ is the outcome class of the game

Equivalent games

Two Games, G, H, are equivalent if

$$
o(G+K)=o(H+K)
$$

for all games K
where $o()$ is the outcome class of the game

Sprague-Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
G=* n
$$

Sprague-Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
G=* n
$$

Sprague-Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
\begin{aligned}
& G=* n \\
& \begin{array}{ll}
3 \oplus 4 & 011 \\
100
\end{array} \\
& 111 n=7
\end{aligned}
$$

Sprague-Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
G=* n
$$

\qquad
G

Sprague-Grundy Theorem

Any finite impartial game is equivalent to a single Nim heap

$$
G=* n
$$

Grundy Function

Apple Tree

Apple Tree

Apple Tree

Apple Tree

$15 \oplus 1 \oplus 1 \oplus 1 \oplus 4$

Where should you cut?

Branches are 8, 6
The Hackenbush Homestead

Branches are 8, 6

Want $(4,6)$ or $(8,2)$
The Hackenbush Homestead

Branch to be $(4,6)$

The Hackenbush Homestead

The balanced homestead

WEIGHT $=5$
The Hackenbush Homestead

