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Game Theory, Guess It, 
Foxholes 

THE THEORY 

GAME THEORY, one of the most useful branches of modern math- 
ematics, was anticipated in the early 1920's by the French 
mathematician Emile Borel, but it was not until 1926 that John 
von Neumann gave his proof of the minimax theorem, the fun- 
damental theorem of game theory. On this cornerstone he built 
almost single-handedly the beautiful basic structure of game 
theory. His classic 1944 work, Theory of Games and Economic 
Behavior, written with the economist Oskar Morgenstern, cre- 
ated a tremendous stir in economic circles (see "The Theory of 
Games," by Oskar Morgenstern, Scientific American, May 
1949). Since then game theory has developed into a fantastic 
amalgam of algebra, geometry, set theory, and topology, with 
applications to competitive situations in business, warfare, and 
politics as well as economics. 

Attempts have been made to apply game theory to all kinds 
of other conflict situations. What is the nation's optimal strategy 
in the Cold War Game? Is the Golden Rule, some philosophers 
have asked, the best strategy for maximizing happiness payoffs 
in the Great Game of Life? How can a scientist best play the 
Induction Game against his formidable opponent Nature? Even 
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psychiatry has not been immune. Although Eric Berne's "trans- 
actional therapy" (popularized by his best-selling Games Peo- 
ple Play) makes no use of game theory mathematics, it borrows 
many of its terms from, and obviously has been influenced by, 
the game theory approach. 

Most game theory work has been on what are called two- 
person zero-sum games. This means that the conflict is between 
two players (if there are more, the theory gets muddied by 
coalitions) and whatever one player wins the other loses. (One 
reason game theory is difficult to apply to international conflicts 
is that they are not zero-sum; a loss for the U.S.S.R. is not neces- 
sarily a gain for the United States, for example.) The main pur- 
pose of this chapter is to present an interesting two-person 
zero-sum card game invented by Rufus Isaacs, a game theory 
expert who wrote Differential Games (John Wiley, 1965) and 
is professor of applied mathematics at Johns Hopkins University. 
But first a quick look at some elementary game theory. 

Consider this trivial game. Players A and B simultaneously 
extend one or two fingers, then B gives A as many dollars as 
there are fingers showing. The game obviously is unfair since 
A always wins. How, though, should A play so as to make his 
wins as big as possible, and how should B play so as to lose as 
little as possible? Most games have numerous and complicated 
strategies, but here each player is limited to two: he can show 
one finger or he can show two. The "payoff matrix" can there- 
fore be drawn on a 2-by-2 square as shown in Figure 4, left. 
By convention, A's two strategies are shown on the left and B's 
two strategies are shown above. The cells hold the payoffs for 
every combination of strategies. Thus if A shows one finger and 
B two, the intersection cell shows a $3 payoff to A. (Payoffs are 
always given as payments from B to A even when the money 
actually goes the other way, in which case the payment to B is 
indicated by a minus sign.) 

If A plays one finger, the least he can win is 2. If he plays 
two fingers, the least he can win is 3. The largest of these lows 
(the 3 at lower left) is called the maxmin (after maximum of 
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Payoff matrix Matrix for Matrix 
for a trivial game odds-and-evens game for card game 

FIGURE 4 

the minima). If B plays one finger, the most he can lose is 3. 
If he plays two fingers, the most he can lose is 4. The least of 
these highs (again the 3 at lower left) is called the minmax 
(minimum of the maxima). If the cell that holds the minmax 
is also the cell that holds the maxmin, as it is in this case, the 
cell is said to contain the game's "saddle point" and the game is 
"strictly determined." 

Each player's best strategy is to play a strategy that includes 
the saddle point. A maximizes his gain by always showing two 
fingers; B minimizes his loss by always showing one. If both 
play their best, the payoff each time will be $3 to A. This is 
called the "value" of the game. As long as either player uses 
his optimal strategy he is sure to receive a payoff equal to or 
better than the game's value. If he plays a nonoptimal strategy, 
there is always an opposing strategy that will give him a poorer 
payoff than the value. In  this case the game is of course so triv- 
ial that both optimal strategies are intuitively obvious. 

Not all games are strictly determined. If we turn the finger 
game into "odds and evens" (equivalent to the game of match- 
ing pennies), the payoff matrix becomes the one shown in Fig- 
ure 4, middle. When fingers match, A wins $1; when they do 



not match, B wins $1. Since A's maxmin is -1 and B's minmax 
is 1, it is clear there is no saddle point. Consequently neither 
player finds one strategy better than the other. I t  would be fool- 
ish, for example, for A to adopt the strategy of always showing 
two fingers because B could win every time by showing one 
finger. To play optimally each player must mix his two strate- 
gies in certain proportions. Ascertaining the optimal propor- 
tions can be difficult, but here the symmetry of this simple game 
makes it obvious that they are 1 : 1. 

This introduces an all-important aspect of game theory: to be 
effective the mixing must be done by a randomizing device. 
It is easy to see why nonrandom mixing is dangerous. Suppose 
A mixes by alternating one and two fingers. B catches on and 
plays to win every time. A can adopt a subtler mixing pattern 
but there is always the chance that B will discover it. If he tries 
to randomize in his head, ~nconscious biases creep in. When 
Claude E. Shannon, the founder of information theory, was at 
the Bell Telephone Laboratories, he and his colleague D. W. 
Hagelbarger each built a penny-matching computer that con- 
sistently won against human players when they made their 
own choices by pressing one of two buttons. The computer an- 
alyzed its opponent's plays, detected nonrandom patterns, and 
played accordingly. Because the two machines used different 
methods of analyzing plays, they were pitted against each other 
"to the accompaniment," Shannon disclosed, "of small side bets 
and loud cheering" (see "Science and the Citizens," Scientific 
American, July 1954). The only way someone playing against 
such a machine can keep his average payoff down to zero is to 
use a randomizer-for example, flipping a penny each time to 
decide which button to push. 

The game matrix shown in Figure 4, right, provides an amus- 
ing instance of a game with a far from obvious mixed strategy. 
Player A holds a double-faced playing card made by pasting 
a black ace back to back to a red eight. Player B has a similar 
double card: a red two pasted to a black seven. Each chooses a 
side of his card and simultaneously shows i t  to the other. A wins 



Game Theory, Guess I t  Foxholes 39 

if the colors match, B if they fail to match. I n  every case the 
payoff in dollars is equal to the value of the winner's card. 

The game looks fair (has a value of zero) because the sum of 
what A can win (8 + 1 = 9) is the same as the sum of what B 
can win (2 + 7 = 9). Actually the game is biased in favor of B, 
who can win an average of $1 every three games if he mixes his 
two strategies properly. Since 8 and 1, in one diagonal, are each 
larger than either of the other two payoffs, we know at once 
that there is no saddle point. (A 2-by-2 game has a saddle point 
if and only if the two numbers of either diagonal are not both 
higher than either of the other two numbers.) Each player, 
therefore, must mix his strategies. 

Without justifying the procedure, I shall describe one way to 
calculate the mixture for each player. Consider A's top-row 
strategy. Take the second number from the first: 1 - (-2) = 3. 
Do the same with the second row: -7 -8 = -15. Form a frac- 
tion (ignoring any minus signs) by putting the last number 
above the first: 15/3, which simplifies to 5/1. A's best strategy 
is to mix in the proportions 5 : 1, that is, to show his ace five 
times for every time he shows his seven. A die provides a con- 
venient randomizer. He can show his ace when he rolls 1, 2, 3, 
4, or 5, his seven when he rolls 6. The randomizer's advice 
must, of course, be concealed from his opponent, who otherwise 
would know how to respond. 

B's best strategy is similarly obtained by taking the bottom 
numbers from the top. The first column yields 8, the second 
-10. Ignoring minus signs and putting the second above the 
first gives 10/8, or 5/4. B's best strategy is to show his seven 
five times to every four times for the two. As a randomizer he 
can use a table of random numbers, playing the seven when the 
digit is 1, 2, 3,4, or 5 and the deuce when it is 6, 7, 8, or 9. 

To calculate the game's value (the average payoff to A),  as- 
sume that the cells are numbered left to right, top to bottom, 
a, b, c, d .  The value is 

ad - bc . 
a + d - b - c  



The formula in this case has a value of -1/3. As long as A 
plays his best strategy, the 5 : 1 mixture, he holds his average 
loss per game to a third of a dollar. As long as B plays his best 
mixture, the 5 : 4, he ensures an average win per game of a 
third of a dollar. The fact that every matrix game, regardless 
of size or whether it has a saddle point, has a value, and that 
the value can be achieved by at least one optimal strategy for 
each player, is the famous minimax theorem first proved by 
von Neumann. Readers may enjoy experimenting with 2-by-2 
card games of this type but using different cards, and calculat- 
ing each game's value and optimal strategies. 

Most two-person board games, such as chess and checkers, 
are played in a sequence of alternating moves that continues 
until either one player wins or the game is drawn. Since the 
number of possible sequences is vast and the number of possible 
strategies is astronomically vaster, the matrix is much too enor- 
mous to draw. Even as simple a game as ticktacktoe would re- 
quire a matrix with tens of thousands of cells, each labeled 1, 
-1, or 0. If the game is finite (each player has a finite number 
of moves and a finite number of choices at each move) and has 
"perfect information" (both players know the complete state of 
the game at every stage before the current move), it can be 
proved (von Neumann was the first to do it) that the game is 
strictly determined. This means that there is at least one best 
pure strategy that always wins for the first or for the second 
player, or that both of the players have pure strategies that can 
ensure a draw. 

THE G A M E  OF GUESS I T  

ALMOST ALL card games are of the sequential-move type but 
with incomplete information. Indeed, the purpose of making 
the backs of cards identical is to conceal information. In such 
games the optimal strategies are mixed. This means that a 
player's best decision on most or all of his moves can be given 
only probabilistically and that the value of the game is an aver- 
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age of what the maximizing player will win in the long run. 
Poker, for instance, has a best mixed strategy, although (as in 
chess and checkers) it is so complicated that only simplified 
forms of it have been solved. 

Isaacs' card game, named Guess It  by his daughter Ellen, is 
remarkable in that it is a two-person sequential-move game of 
incomplete information, sufficiently complicated by bluffing to 
make for stimulating play, yet simple enough to allow com- 
plete analysis. 

The game uses eleven playing cards with values from ace to 
jack, the jack counting as 11. The packet is shuffled. A card is 
drawn at random and placed face down in the center of the 
table, neither player being aware of its value. The remaining 
ten cards are dealt, five to each player. The object of the game 
is to guess the hidden card. This is done by asking questions of 
the form "Do you have such-and-such a card?" The other 
player must answer truthfully. No card may be asked about 
twice. 

At any time, instead of an "ask" a player may end the game 
by a "call." This consists of naming the hidden card. The card 
is then turned over. If it was correctly named, the caller wins; 
otherwise he loses. To play well, therefore, a player must try to 
get as much information as he can, at the same time revealing 
as little as possible, until he thinks he knows enough to call. The 
delightful feature of the game is that each player must resort 
to occasional bluffing, that is, asking about a card he himself 
holds. If he never bluffed, then whenever he asked about a card 
not in his opponent's hand, the opponent would immediately 
know that card must be the hidden o n e a n d  would call and 
win. Bluffing is therefore an essential part of strategy, both for 
defense and for tricking the opponent into a false call. 

If player A asks about a card, say the jack, and the answer is 
yes, both players will then know B has that card. Since it will 
not be asked about again, nor will it be called, the jack plays no 
further role in the game. B places it face up on the table. 

If B does not have the jack, he answers no. This places him 



in a quandary, although one that proves to be short-lived. If he 
thinks A is not bluffing, he calls the jack and ends the game, 
winning if his suspicion is correct. If he does not call it and the 
hidden card is the jack, then A (who originally asked about it) 
will surely call the jack on his next play, for he will know with 
certainty that it is the hidden card. Therefore, if A does not call 
the jack on his next play, it means he had previously bluffed 
and has the jack in his hand. Again, because the location of the 
card then becomes known to both players, it plays no further 
role. It is removed and placed face up on the table. In  this 
way hands tend to grow smaller as the game progresses. After 
eacheelimination of a card the players are in effect starting a 
new game with fewer cards in hand. 

I t  is impossible to give here the details of how Isaacs solved 
the game. The interested reader will find it explained in his ar- 
ticle "A Card Game with Bluffing" in The  American Mathe- 
matical Monthly (Vol. 62, February 1955, pages 99-108). I 
will do no more here than explain the optimal strategies and 
how they can be played with the aid of two spinners made with 
the dials shown in Figure 5. Readers are urged first to play the 
game without these randomizers, keeping a record of n games 
between players A and B. They should then play another n 
games with only A using the spinners, followed by a third set 
of n games with only B using the spinners. (If both players use 
randomizers, the game degenerates into a mere contest of 
chance.) In this way an empirical test can be made of the 
efficacy of the strategy. 

The dials can be copied or mounted on a rectangle of stiff 
cardboard. Stick a pin in the center of each and over each pin 
put the loop end of a bobby pin. A flip of the finger sends the 
bobby pin spinning. The spinners must of course be kept out 
of your opponent's view when being used, either by turning 
your back when you spin them or keeping them on your lap be- 
low the edge of the table. After using them you must keep a 
"poker face" to avoid giving clues to what the randomizers tell 
you to do. 

The top dial tells you when to bluff. The boldface numbers 





give the number of cards in your hand. The other numbers 
scattered over the dial and attached to marks stand for the num- 
ber of cards in your opponent's hand. Assume that you have 
three cards and he has two. Confine your attention to the ring 
labeled with a boldface 3. Spin the bobby pin. If it stops in the 
portion of the ring that extends clockwise from mark 2 to the 
heavy horizontal line, you bluff. Otherwise you ask about a card 
that could be in your opponent's hand. 

In  either case, asking or bluffing, pick a card at random from 
the possibilities open to you. If a strict empirical test of strategy 
is to be made, you should use a randomizer for this selection. 
The simplest device would be a third spinner on a circle divided 
into I I equal sectors and numbered I to I I. If the first spinner 
tells you to bluff, for example, and you have two, four, seven, 
and eight in your hand, you spin the third spinner repeatedly 
until it stops on one of those numbers. Without the aid of such 
a spinner, simply select at random one of the four cards in your 
hand. The danger of your opponent's profiting from an uncon- 
scious mental bias is so slight, however, that we shall assume a 
third spinner is not used. 

The bottom dial is used whenever you have just answered no 
to an ask. On this dial the rings are labeled with italic numbers 
to indicate that they correspond to the number of cards in your 
opponent's hand. The boldface numbers near the marks give 
the number of cards you hold. As before, pick the appropriate 
ring and spin the bobby pin. If it stops in the portion of the ring 
that extends from the proper mark clockwise to the horizontal 
line, call the card previously asked. If it does not stop in this 
portion of the ring, your next action depends on whether your 
opponent has just one card or more than one. If he has only one, 
call the other unknown card. If he has more than one (and you 
have at least one card), you must ask. To decide whether to 
bluff or not, spin the first dial, but now you must pick your ring 
on the assumption that his hand is reduced by one card. The 
reason for this is that if he did not bluff on his last ask, your 
"no" answer will enable him to win on his next move. You 
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therefore play as if he were bluffing and the game were to con- 
tinue, in which case the card he asked about has been taken out 
of the game by your "no" answer even though it is not actually 
placed face up on the table until after his next move. 

In addition to the circumstances just explained, you call only 
under the following circumstances: (1) When you know the 
hidden card.  his-occurs when you have asked without bluf- 
fing and received a "no" reply, and he has not won the game 
by calling on his next turn; and it occurs of course when he 
holds no cards.) ( 2 )  When you have no cards and he has one 
or more, because if you do not call, he surely will call and win 
on his next play. If each of you holds just one card, it is imma- 
terial whether you call or ask; the probability of winning is 1/2 
and is obtained either way. (3) When instructed to call by the 
second dial, as explained before. 

The table in Figure 6 shows the probability of winning for 
the player who has the move. The number of his cards appears 
at the top, those of the other player on the left. At the begin- - .  

ning, assuming that both players use randomizers for playing 
their best, the first player's probability of winning is .538, or 

NUMBER OF CARDS IN PLAYER'S HAND 
1 2 3 4 5 

FIGURE 6 
Chart of probabilities of winning Guess It game 



slightly better than 1/2. If the payoff to the first player is $1 
for each win and zero for each loss, then $.538 is the value of 
the game. If after each game the loser pays the winner $1, the 
first player will win an average of 538 games out of every 
1,000. Since he receives $538 and loses $462, his profit is $76, 
and his average win per game is $76/1,000, or $.076. With 
these payoffs the game's value is a bit less than eight cents per 
game. If the second player does not use randomizers, the first 
player's chance of winning increases substantially, as should 
appear in an empirical test of the game. 

FOXHOLES 

HERE IS a simple, idealized war game that Isaacs uses to explain 
mixed strategies to military personnel. One player, the soldier, 
has a choice of hiding in any one of the five foxholes shown in 
Figure 7. The other player, the gunner, has a choice of firing 
at one of the four spots A, B,  C, D. A shot will kill the soldier if 
he is in either adjacent foxholeshot B, for example, is fatal if 
he is in foxhole 2 or 3. 

"We can see the need for mixing strategies," Isaacs writes, 
"for the soldier might reason: 'The end holes are vulnerable to 
only one. shot, whereas the central holes can each be hit two 
ways. Therefore I'll hide in one of the end holes.' Unfortunately 
the gunner might foresee this reasoning and fire only at A or 
D. If the soldier suspects that the gunner will do this, he will 
hide in a central hole. But now the gunner may still be one-up 
by guessing that the soldier will think he will think this way, 
therefore he aims at the center. These attempts at outthinking 
the opponent lead only to chaos. The only way either player 
can be sure of deceiving his opponent is by mixing his 
strategies." 

Assume that the payoff is I if the gunner kills the soldier, 0 
if he does not. The value of the game is then the same as the 
probability of a hit. What are the optimal strategies for each 
player and what is the game's value? 



The foxhole game 



A N S W E R S  

RUFUS ISAACS' foxhole game concerns a soldier who has a choice 
of hiding in one of five foxholes in a row and a gunner who has 
a choice of firing at one of four spots, A, By C, D, between ad- 
jacent foxholes. An equivalent card game can be played with 
five cards, only one of which is an ace. One player puts the 
cards face down in a row. The other player picks two adjacent 
cards and wins if one of them is the ace. 

"One can easily write a 4-by-5 matrix for this game and 
apply one of the general procedures described in the textbooks," 
Isaacs writes. "But, with a little experience, one learns in simple 
cases like this how to surmise the solution and then verify it." 

The soldier's optimal mixed strategy is to hide only in holes 
1, 3, and 5, selecting the hole with a probability of 1/3 for each. 
The gunner has a choice of any of an infinite number of op- 
timal strategies. He assigns probabilities of 1/3 to A, 1/3 to D, 
and any pair of probabilities to B and C that add to 1/3. (For 
example, he could let B and C each have a probability of 1/6, 
or he could give one a probability of 1/3 and the other a prob- 
ability of 0.) 

To see that these strategies are optimal, consider first the sol- 
dier's probability of survival. If the gunner aims at A, the sol- 
dier has a 2/3 chance of escaping death. The same is true if the 
gunner aims at D. If he aims at By he hits only if the soldier is 
in hole 3, so that again the probability of missing is 2/3. The 
same is true if he aims at C. Since each individual choice gives 
the soldier a 2/3 probability of survival, the probability remains 
2/3 for any mixture of the gunner's choices. Thus the soldier's 
strategy ensures him a survival probability of at least 2/3. 

Consider now the gunner's strategy. If the soldier is in hole 1, 
he has a hit probability of 1/3. If the soldier is in hole 2, he is 
hit only if the gunner fires at A or By and consequently the 
probability of a hit is 1/3 plus whatever probability the gunner 
assigned to B. If the soldier is in hole 3, he is hit only if the 
gunner fires at B or C, to which are assigned probabilities adding 
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to 1/3. Therefore the probability of a hit here is 1/3. If the sol- 
dier is in hole 4, the probability of a hit is 1/3 plus the probabil- 
ity assigned to C. If he is in hole 5, the probability is 1/3. Thus 
the gunner's strategy guarantees him a probability of at 
least 1/3. 

Assuming a payoff of 1 to the gunner if he kills the soldier, 0 
if he doesn't, the value of the game is 1/3. The gunner has an 
infinite number of strategies that guarantee him a hit probabil- 
ity of at least 1/3. I t  is possible he could do better against a 
stupid opponent, but against good opposition he can hope for no 
more because, as we have seen, the soldier has a strategy that 
keeps the probability of his death down to 1/3. A similar argu- 
ment holds from the soldier's standpoint. By using his optimal 
strategy he keeps the ~ayoff  at 1/3 and cannot hope to do better 
because the gunner has a way of making it at least 1/3. As a 
further exercise, readers can try to prove there are no optimal 
strategies other than those explained here. 

"The process of surmising the solution is not as hard as it 
looks," Isaacs adds. "The reader can so convince himself by 
generalizing this solution to the same game but with n foxholes. 
For odd n the preceding solution carries over in an almost ob- 
vious way, but with even n one encounters some modest 
novelty." 


