
TICKTACKTOE GAMES 

"It's as simple as tit-tat-toe, three-in-a-row, 
and as easy as playing hooky. I should 
hope we can find a way that's a little more 
complicated than that, Huck Finn." 

-MARK TWAIN. 
The Adventurec of Hucklebeny Fznn 

Ticktacktoe (the spelling varies widely) is not nearly so simple 
as Tom Sawyer thought. When Charles Sanders Peirce wrote 
his Elements of iViathematics, a textbook that was not published 
until 1976, he included a 17-page analysis of only the side 
opening of this ancient game. It was one of Peirce's many an- 
ticipations of "modern math." Today's progressive teachers 
frequently use ticktaktoe to introduce their pupils to such con- 
cepts as the intersection of sets, rotational and mirror-reflec- 
tion symmetry, and higher Euclidean space. In this chapter we 
consider some unusual aspects of the game not covered in two 
earlier columns reprinted in The Scient$c American Book oJ 
iZlathematica1 Puzzles t5 Diz~ersions (Chapter 4 ) ,  and 12lathematical 
Carnival (Chapter 16). 

The traditional game, as most readers surely know, is a draw 
if both players do their best. From time to time pictures of a 
ticktacktoe game appear in advertisements and cartoons, and 
sometimes they provide pleasant little puzzles. For example, on 
May 13, 1956, in the New York Herald Tribune, there was an 
I B ~  advertisement with the unfinished game at the left in Fig- 
ure 52. Which player went first, assuming that the players were 
not stupid? It takes only a moment to realize that 0 could not 
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Figure 52 

Three easy ticktacktoe puzzles 

have gone first or  X would have played the top left corner on 
his second move. 'The other two patterns are almost as trivial. 
Does the center one, from a Little Lulu cartoon in The Saturday 
Evening Post (January 16, 1937), depict a possible game? At the 
right is a pattern from an advertisement by publisher Lyle 
Stuart in The New York Times (June 1, 1971). In which cell must 
the last move have beer* made? 

If the first player, say X, opens in the center cell, he can 
force a draw that always ends with the same basic pattern. This 
underlies several prediction tricks. For example, the magician 
draws the finish of a game, with all cells filled, on a square 
sheet of paper that he turns face down without letting anyone 
see it. H e  then plays a ticktacktoe game with someone, writing 
on another square sheet. After the game ends in a draw he 
turns over his "prediction." T h e  two patterns match cell for 
cell. 

'The technique is explained in Figure 5 3 .  X plays the center 
opening. If 0 marks any corner cell, X forces the draw shown 
at the left in the illustration (moves are numbered in order of 
play). It is only necessary for X to remember where to make his 
second move, since all moves are forced from then on; a simple 
rule for the second move is to consider the corner opposite 0 ' s  
first move and then play adjacent to it on the clockwise side. If 
0 responds to the opening with a side cell, X forces the draw 
shown at the right. In this situation only 0's moves are forced 

Figure 53 

A ticktacktoe prediction trick 
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and X must remember how to play his next four moves. T h e  
following simple rule was proposed by a magician who signed 
himself "Thorson" when he described this trick in the Septem- 
ber 1960 issue of M.U.M., official organ of the Society of 
American Magicians: X makes his second, third and fourth 
moves adjacent and clockwise to 0's previous moves, and his 
fifth move in the only remaining empty cell. 

Note that the two final results are identical. Of course, each 
game can be played in any of four different orientations. T h e  
magician, recalling which corner of his inverted prediction has 
the 0 surrounded by three X's, casually turns over the square 
sheet along the proper axis-orthogonal or  diagonal-so that 
his predicted pattern matches the orientation of the game just 
completed. 

T h e  trick can even be repeated. This time X substitutes 
counterclockwise fbr clockwise in the rules, having drawn a 
prediction that is a mirror image of the preceding one. T h e  
two predictions will not match in any orientation and few peo- 
ple will realize that they are mirror reflections of each other. 

Dozens of variations of planar ticktacktoe have been ana- 
lyzed. Standard games on squares of higher order than 3, 
when the goal on an order-n board is to get n in a row, are 
uninteresting because the second player can easily force a 
draw. My first column on ticktacktoe discussed games in which 
counters are moved over the board (one such version goes back 
to ancient Greece), and toetacktick, in which the first to get 
three in a row loses. 

A. K. Austin's "wild ticktacktoe," in which players may use 
either X o r  0 on every move, was shown to be a first-player win 
in my Sixth Book ofiMathematicn1 Games, Chapter 12,  Problem 3. 
What about "wild toetacktick," in which players can choose 
either mark on each move and the first three-in-a-row loses? In 
1964 Solomon W. Golomb and Robert Abbott independently 
found that the simple symmetry strategy by which the first 
player can force at least a draw in standard toetacktick also ap- 
plies to the wild version. A center opening is followed by play- 
ing directly opposite the other player's moves, allvays choosing 
X if he plaled 0 and 0 if he played X. The  question remains: 
Does the first player have a winning strategy in wild toetacktick? 
Abbott made an exhaustive tree diagram of all possible plays 
and proved that the second player too can force a draiv. Tame 
toetacktick also is a draw if both sides play rationally. 

An amusing variation appears in David L. Silverman's book 
of game puzzles, Your Move. The  rules are the same as in 
standard ticktacktoe except that one player tries to achieve a 
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draw and the other player wins if either of them gets three in 
a row. Can the reader show that no matter who plays first the 
player trying to force a row of three can always do so? Silver- 
man does not answer this in his book, but I shall give his solu- 
tion in the Answer Section. 

It is impossible to describe all the other planar variants that 
have been proposed, such as using numbers or letters as marks 
for the goal of forming a certain sum or spelling a certain 
word; playing on the vertexes of curious nine-point graphs (for 
a game on one such graph see my Mathematical Magic Show, 
Chapter 5, Problem 5); using counters with X on one side and 
0 on the other, with the counters turned over according to 
specified rules. Games have been marketed in which flip-overs 
are randomized by concealed magnets that may or may not re- 
verse a counter or by tossing beanbags at a board to cause cu- 
bical cells to alter their top symbols by rotating. 

If ticktacktoe is played on an unlimited checkerboard, it is a 
trivial win for the first player if the goal is to get four or any 
smaller number of one's marks in an orthogonal or diagonal 
row. When the goal is five in a row, this game is far from triv- 
ial. I t  is the ancient Oriental game known as go-moku (five 
stones) in Japan, where it is played on the intersections of a go 
board. (The game is sold in the U.S. by Parker Brothers under 
the name of Pegity.) Although it is widely believed that a first- 
player winning strategy exists, this has not yet, to my knowl- 
edge, been proved. 

There is no doubt about the first player's strong advantage 
in unrestricted go-moku. Indeed, it is so overwhelming that in 
Japan the standard practice is to weaken the first player by not 
allowing the following moves: 

(1) A move that simultaneously creates a "fork" of two or 
more intersecting rows of open threes. By "open three" is 
meant any pattern in which a play will form a row of four ad- 
jacent stones that is open at both ends. There is one exception. 
A fork move is permitted if it is the only way to block an op- 
ponent from completing a row of five. 

(2) A move that forms a row of more than five. In other 
words, the winning move must be exactlj five. 

In master play, both rules are usually applied only to the 
first player. Under these rules, the game is commonly called 
"renju" in Japan. 

It has been conjectured that if there is a winning strategy for 
the first player in unrestricted go-moku, on a large enough 
board, there will be a winning strategy on a sufficiently large 
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board even if the prohibitions are observed, but this is far from 
established. Even if a winning strategy is found for unre- 
stricted go-moku, difficult questions will remain. What is the 
smallest board on which the first player can win? What is the 
shortest way to win? The two questions may or may not be an- 
swered by the same line of play. 

It is not possible that the second player has a winning strat- 
egy in unrestricted go-moku or similar games in any dimen- 
sion. The bare bones of the simple reductio ad absurdurn proof, 
first formulated by John Nash for the game of hex, are as fol- 
lows. ,4ssume that a second-player winning strategy exists. If it 
does, the first player can make an irrelevant, random first 
play-a play that can only be an asset-and then, since he is 
now in effect the second player, win by appropriating the sec- 
ond player's strategy. Because this contradicts the assumption, 
it follows that no second-player winning strategy exists. The 
first player can either win or at least force a draw if the game 
allows draws. 

Go-moku is a stimulating game. To  catch its special flavor 
the reader is urged to study a position from Silverman's book 
[see Figure 541 and determine how 0 can play and win in five 
moves. Note that X has an open-end diagonal of three, which 
he threatens to lengthen to an open-end row of four. 

Figure 54 

Go-moku problem: 0 to play and win 

IYhen ticktacktoe is extended to three dimensions, the first 
player wins easily on an order-3 cube by first taking the center 
cell. As Silverman points out, if the first player fails to open 
with the center cell, the second player can win by taking it; if 
the center is permanently prohibited to both players, the first 
player has an easy win. Three-dimensional toetacktick (the first 
row of three loses) is also a win for the first player. He plays 
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the same strategy used for forcing a draw in planar toetacktick: 
He first takes the center and then always plays symmetrically 
opposite his opponent. Since drawn positions are impossible on 
the order-3 cube, this technique forces the second player even- 
tually to form a row of three. Daniel I. A. Cohen, in a paper 
listed in the bibliography, proves that, as in the case of planar 
toetacktick, this is a unique winning strategy. The first player 
loses if he does not open by taking the central cell, and also 
loses if, after making this first move, he does not follow anti- 
podal play. 

Draw games are possible on the order-4 cube, but whether 
the first player can force a win is not, as far as I know, posi- 
tively established. (There cannot, of course, be a second-player 
win because of Nash's proof.) As with go-moku, the first player 
has a strong advantage and a winning strategy is believed to 
exist. Many computer programs for this game have been writ- 
ten, but the complexity of play is so enormous that I do not 
think a first-player win has yet been rigorously demonstrated. 
About a dozen readers have sent me what they consider win- 
ning strategies, but detailed formal proofs are still unverified. 
Most of the strategies involve first taking four of the eight cen- 
tral cells and then proceeding to a forced win. Virtually noth- 
ing is known about three-dimensional games where counters 
are allowed to move from cell to cell. 

Another unexplored type of 3-space game is one in which 
two players alternately draw from a limited supply of unit 
cubes of two or more colors to build a larger cube with some 
winning objective in view, for example, using cubes of n colors 
and trying to get a row, on an order-n cube, in which all n 
colors appear. For such games gravity imposes restraints, since 
cubes cannot be suspended in midair. 

Because drawn games of standard ticktacktoe are possible in 
2-space on an order-3 board, and in 3-space on an order-4 
board, it was once conjectured that in a space of n dimensions 
the smallest board allowing a draw was one with n + l cells on 
a side. It turned out, however, that although in n-space a board 
of order n +  1 or higher always allows a draw, it is sometimes 
possible for an n-space board of fewer than n + 1 cells on a side 
to allow a draw. This was first established about 1960 by Alfred 
Mi. Hales, when he constructed a draw on the order-4 hyper- 
cube, or fourth-dimension cube. 

Several readers have sent informal but probably valid proofs 
that the first player can always win on the order-4 hypercube. 
Whether or not he can force a win on the order-5 hypercube 
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is yet another of the many unanswered questions about exten- 
sions and variants of what most people, like Tom Sawyer, re- 
gard as a "simple" game. 

ANSWERS 
The second game in Figure 52 is not possible. Zero must have 
played first and last, but X had a win before the final move, so 
the last move would not have been made. In the third game, X 
could have completed a win if his first two moves had been on 
either side, therefore the first two moves must have been di- 
agonally opposite, and his final move in the top right corner. 

These two problen~s are so easily solved that I will add here 
a difficult one that involves what chess players call retrograde 
analysis. Figure 35 shows the pattern after two perfect players 
have agreed to a draw. Your task is to determine the first and 
last moves. If you can't solve it ,  you will find the solution in the 
Journal of Recreational Mathematzcs, Vol. 1 1, No. 1, 1978, page 
70. The problem had been earlier posed in the same journal 
by Les Marvin. 

Figure 55 

What were the first and last moves? 

In Silverman's first problem, X can always win, regardless of 
whether he plays first or second. Assume that the cells are 
numbered (left to right, top to bottom) from 1 to 9. Here is 
Silverman's proof: 

If X begins, he takes 1. 0 must take 5, otherwise X can get 
three of his marks in a row by standard ticktacktoe strategy. X2 
forces 03,  then X4 forces 07,  which completes three 0's in a 
line, giving X the win. 

If 0 starts the game, he has a choice of corner, side or center 
opening. If he opens at the center ( 5 ) ,  X responds with 1. If 
the move is 02,  X7 forces 04,  then X9 forces 08,  which loses. 
If 0 's  second move is 3, X4 forces 07,  which also loses. If 0's 
second move is 6, X7 forces 0 to lose at 4. If 0's second move 
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is 9, X2 forces 03,  then X4 forces 0 to lose at 7. All other lines 
of play are symmetrically equivalent. 

If 0 opens at the side, say at 4, X5 will win. As before, there 
are four basically different continuing lines of play: (1) 0 1, X3, 
0 7  (loses), (2) 02,  X3, 07,  X9, 0 1  (loses), (3) 03,  X9, 01,  X8, 0 2  
(loses), (4) 06,  X3, 07,  X9, 0 1  (loses). 

A corner opening by 0, say at 1, is met with X5, which leads 
again to four basically different continuations: (1) 02,  X7, 0 3  
(loses), (2) 03,  X 8 ,  0 2  (loses), (3) 06,  X8, 02,  X7, 0 3  (loses), (4) 
09 ,  X2, 08,  X3, 0 7  (loses). 

When this game is played on a four-by-four field (X winning 
if there are four of either mark in a row7, 0 winning if the final 
position is drawn), the play is so enormously more complex, 
Silverman informs me, that it has not yet been fully analyzed. 

0 wins Silverman's go-moku problem by playing 0 1  [see Fig- 
ure 561. X2 is forced, 0 3  forces X4, 0 5  forces X6, then 0 7  cre- 
ates an open-end diagonal row of four O's, which X cannot 
block. If X plays at either end, 0 wins by playing at the opposite 
end. As Silverman points out in his book, 0 wins only by coun- 
terattacking. He loses quickly if he plays defensively by trying 
to block X's open-end diagonal row of three. 

Figure 56 

Solution to the go-moku problem 

Note that when X plays on the cell marked 2 it creates a fork. 
This is permitted, however, because the move is forced. It is 
the only way to prevent 0 from winning on the next move. 
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ADDENDUM 
John Selfridge reports that a solution has been found for his "4 
x infinity" ticktacktoe. This is played on a strip that is four cells 
high and infinitelv wide, the winner being the first to get four of 
his marks in an orthogonal or diagonal row. Carlyle 
Lustenberger, in his master's thesis in conlputer science at 
Pennsylvania State University, developed a computer program 
with a winning strategy for the first player on a four-by-30 board. 
The actual lower bound for the width is a few cells shorter, but I 
have not obtained the details. 

The three-by-infinity board is a trivial win for the first player 
on his third move; indeed, the same win can be achieved if only 
one cell is added to the side 01- corner cell of the traditional 
order-3 ticktacktoe field. The five-bv-infinitv board remains 
unsolved. If a win for the first player could be found on this 
board, it would, of course, solve the go-moku game when it is 
played on an arbitrarily large square, with no restrictive rules. 

Oren Patashnik, of Bell Laboratories, was the first to write a 
computer program that establishes a first-player win in 4 x 4 x 4 
ticktacktoe. I had the honor of announcing the verification of his 
1977 program in my SczentzJic Anzerican column of January 1979. 
It required 1,500 hours of computing time, and has been likened 
to the computer proof of the four-color map theorem in its 
length and complexity. I will say no more about it here because 
Patashnik has so thoroughly and amusingly reported on it in his 
paper listed in the bibliography. The program's set of 2,929 
strategic moves for winning is probably far from minimal, but I 
know of no program that has reduced them. 

In 1973 the Netherlands issued a 30+ 10 cents stamp depict- 
ing a drawn pattern in a ticktacktoe game. 

Shein Tl'ang, a computer scientist at the University of Guelph, 
Guelph, Ontario, Canada, has been publishing a monthly 
Gomoku Newsletter since 1979, and the university has, since 1975, 
been sponsoring a North American computer go-moku tourna- 
ment. The programs have been steadily improving. 

A popular variation of go-moku is on sale in the United States 
under the trade name Pente. Invented by Gasy Gabel, it com- 
bines go-moku with elements of go. (See i\Tewsweek, May 10, 
1982, page 78.) 

Several readers wrote to emphasize that Kash's proof applies 
only to unrestricted go-moku. The proof rests on the irrele- 
vance of an extra stone, but in restricted go-moku the rules 
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permit situations in which an extra stone can damage the 
player who owns it. 

Henry Pollak and Claude Shannon apparently were the first 
to prove that the second player can force a draw in unre- 
stricted n-in-a-row ticktacktoe on a large enough board when 
n = 9 or more. Their 1955 proof has not been published. It is 
given by T. G. L. Zetters in his answer to a problem, American 
Matlzematzcal i~lont/zly, Vol. 87, August-September 1980, pages 
575-576. Zetters goes on to show how the proof can be ex- 
tended to n = 8 or more. So far as I know, the question is still 
open for n = 3, 6 and 7. 

W. F. Lunnon, writing in 1971 from University College, in 
Cardiff, gave a simple pairing strategy of unknown origin that 
guarantees a draw for the second player in 5 x 5  ticktacktoe. 
Number the cells as shown in Figure 57. Whenever the first 
player occupies a numbered cell, the second player takes the 
other cell of the same number. Since every line of' five has a 
pair of like-numbered cells, the first player cannot occupy all 
five. If the first player takes the unlabeled center, the second 
player may take any cell, and if the cell he is required to take 
by the pairing strategy is occupied, he may play anywhere. 

Lunnon also reported that he and Neil Sloane, of Bell Labs, 
had together found a remarkable second-player drawing strat- 
egy, based on cell pairing, for the 6 x 6 board. So t  only does it 

Figure 57 

W. F. Lunnon's pairing strategy 
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block ivins on any row, colu~mn or main diagonal, it also blocks 
a win on any broken diagonal! The  cells are numbered as 
sho~vn in Figure 58.  As before, the strategy is to take the cell 
with the same number as the cell just taken. 

Figure 58 

Lunnon-Sloane second-player drawing strategy 

There is more. The  Lunnon-Sloane numbering leads to an 
elegant proof that 9-in-a-row unrestricted go-moku is a draw. 
Cover the infinite board with copies of the 6 x 6  matrix. The  
second player can force a draw by altvays taking the nearest 
cell with the same number as that of the previous play. It is 
easy to see that the first player can obtain no line longer than 8. 

For n x 72 boards, TI equal to 6 or higher, it is trivially easy to 
put a unique pair of numbers in each row of ~z cells and so pro- 
vide a drawing strategy for the second player. For n equal to 3 
or 4, no such labeling is possible, and the draw has to be estab- 
lished in uglier ways. 
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