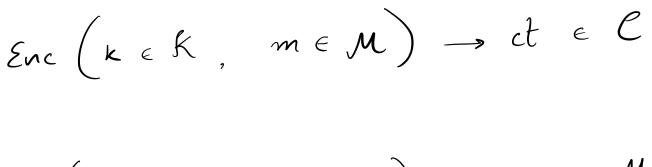
Recap of Lecture 1:



 $Dec(keK, cteE) \rightarrow meM$

Security Definition:
Multiple security def. possible
Lecture 1: ONE TIME PERFECT
SECURITY
Sec Def. 1 (Enc. Dec) satisfies one - time
perfect security if
FOR ALL A,

$$P_i[A wins ONE - TIME SEC. GAME] = \frac{y_2}{2}$$

 C A
 $k = k$
 $b = 10.13$ mo, m₁
 $ct = Enc(k, m_b)$ ct
 b' wins if $b = b'$
ONE TIME SEC. GAME

ONE TIME SECURITY IS IMPRACTICAL

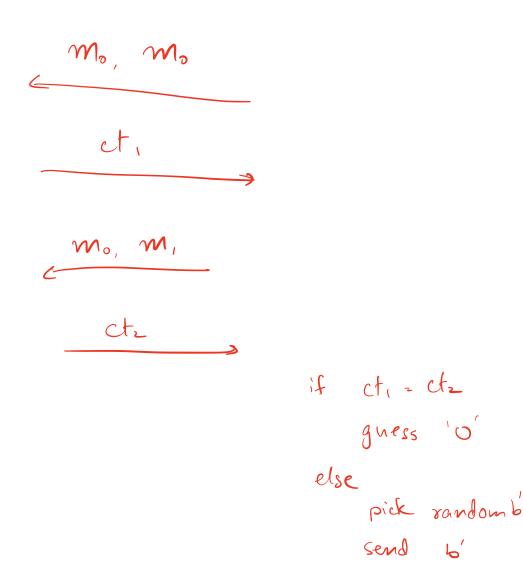
Sec Def. 2 (Enc, Dec) satisfies Two-time perfect security if FOR ALL A, Pr (A wins TWO-TIME SEC. GAME] = 1/2 C A KEK b = {0,13 m_{10} , m_{11} ct, - Enc (k, mb) ct, $m_{20/} m_{21}$ ct_ Enc (K, m26) ctz wins if b=b' Ь′

TWO - TIME SEC. GAME

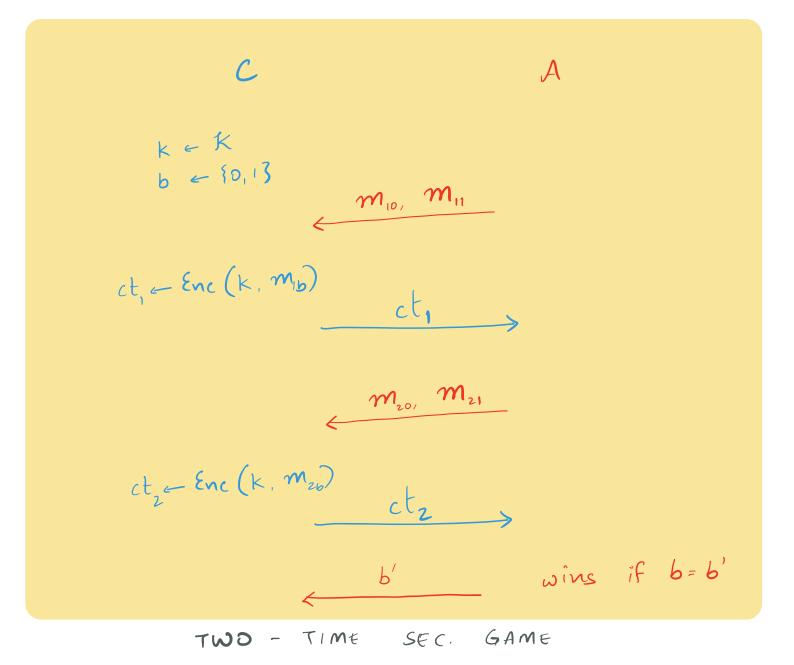
Qn: Two-time perfect security
with randomized enc.?
Suc (key k. msg m; rand. r)
$$\rightarrow$$
 ct
Dec (k. ct) \rightarrow m
Correctness: $\forall k. \forall m. Pr \left[Dec (k. Enc(k,m;r)) = m \right] = 1$

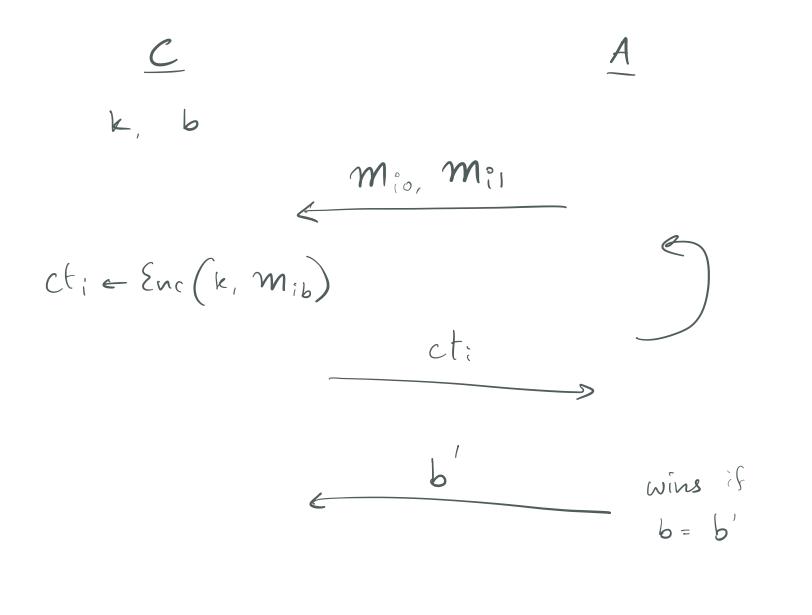
 $R = \{0, 13^{n}, M = \{0, 13^{n} = K\}$ Rot (m 1 r)

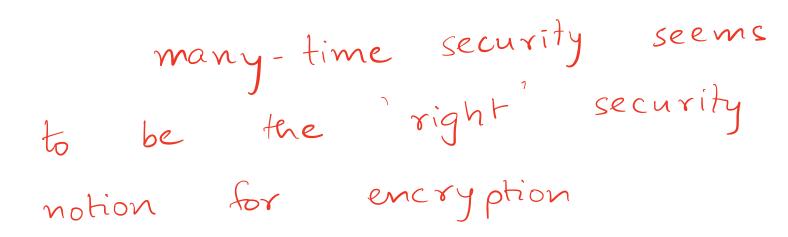
Attack :

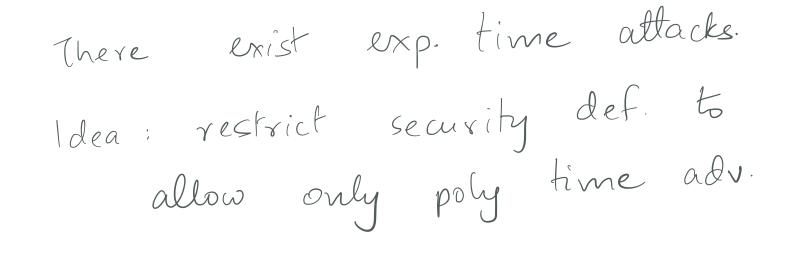


Sec Def. 3 (Enc, Dec) satisfies Two-time perfect security if FOR ALL A, Pr (A wins TWO-TIME SEC. GAME] « 1/2+ Vpoly (key size)









Sec Def. 4 (Enc, Dec) satisfies MANY-time COMPUTATIONAL security if FOR ALL POLY-TIME A, Pr[A wins MANY - TIME SEC. GAME] ~ 1 < 1/2 + poly (key size) [Goldwasser- Micali 82]: If (Enc, Ded) satisfies Def. 4. then adv. learns nothing

new from the ciphentexts.

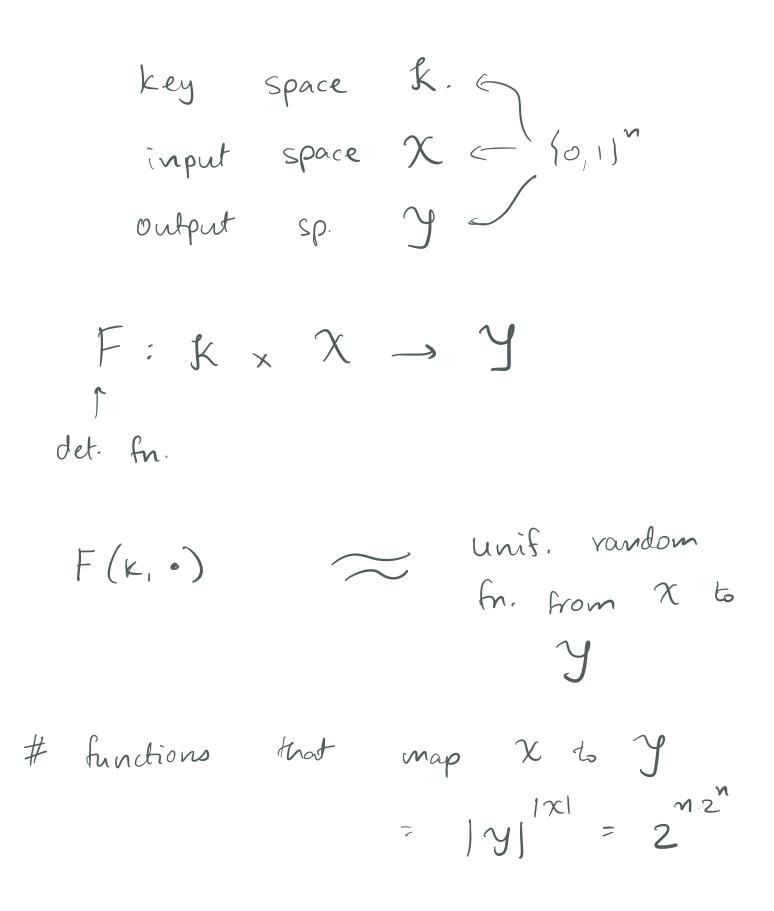
UGLY NEWS: MANY-TIME COMP. SECURITY SEEMS HARD TO PROVE.

Proof of many-time comp. sec. $\downarrow \downarrow$ Existence of ONE WAY Functions $\downarrow \downarrow$ $P \neq NP$

Can we build an enc. scheme Qn: and prove if secure assuming 3 one-way functions exist? 3 Pseudorandom functions. pseudorand. OWFs exist if and only if searce fns. exist. We will build a existence enc. scheme assuming the of pseudovandon fris-Goal: Define pseudorandom functions Use 11 11 to build secure ene.

PSEUDO RANDOM

FUNCTION:



C A 6 = 50,13 if b=0, kek $f_{o} \in F(k, \circ)$ if b=1 $f_i \in unif.$ $f_i \in rand.$ $f_n.$ X; $f_b(x_i)$ poly 6