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There are 25 people at a professor’s party.
The professor would like to locate a group of six people who are popular.
i.e, everyone is a friend of at least one of the six.
Being a busy man, he asks two of his students to find such a group.
25

The first grimaces and starts making a list of ( ¢ ) possibilities.

The second knows that no one in the party has more than three friends’.

" Academicians tend to be lonely.
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There is a graph on n vertices.

Is there a dominating set of size at most k?

(Every vertex is a neighbor of at least one of the k vertices.)

The problem is NP—complete,

but is trivial on “large” graphs of bounded degree,
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There is a graph on n vertices.

Is there a dominating set of size at most k?

(Every vertex is a neighbor of at least one of the k vertices.)

The problem is NP—complete,

but is trivial on “large” graphs of bounded degree,

as you can say NO whenever n > kb.



Pre-processing is a humble strategy for coping with hard problems,
almost universally employed.

Mike Fellows



We would like to talk about the “preprocessing complexity” of a problem.

To what extent may we simplify/compress a problem before we begin to
solve it?

Note that any compression routine has to run efficiently to look attractive.



This makes it unreasonable for any NP—complete problem to admit
compression algorithms.

However, (some) NP—complete problems can be compressed.

We extend our notion (and notation) to understand them.



Notation

We denote a parameterized problem as a pair (Q, k) consisting of a clas-
sical problem Q C {0, 1}* and a parameterization « : {0, 1}* — N.
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A kernelization procedure

is a function f : {0, 1}* x N — {0, 1}* x N, such that

forall (x,k), [x] =n

f(x), k" e Liff (x,k) € L,

Size of the Kernel

and f is polytime computable.



Theorem

Having a kernelization procedure implies, and is implied by,
parameterized tractability.
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n = [x|, k := k(x), and f is a computable function that does not depend
onn.
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Given a kernel, a FPT algorithm is immediate (even brute—force on the
kernel will lead to such an algorithm).
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Theorem

A problem admits a kernel if, and only if,
it is fixed—parameter tractable.

On the other hand, a FPT runtime of f(k)-n® gives us a f(k)—sized kernel.

We run the algorithm for n°*1 steps and either have a trivial kernel if the
algorithm stops, else:
n < f(k)
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“Efficient” Kernelization

What is a reasonable notion of efficiency for kernelization?
The smaller, the better.
In particular,

Polynomial-sized kernels < Exponential-sized Kernels

better than



The problem of finding Dominating Set of size k on graphs where the
degree is bounded by b, parameterized by k, has a linear kernel. This is an
example of a polynomial-sized kernel.



when

NO POLYNOMIAL KERNELS



A composition algorithm A for a problem is designed to act as a fast
Boolean OR of multiple problem-instances.

It receives as input a sequence of instances.

It produces as output a yes-instance with a small parameter if and only if
at least one of the instances in the sequences is also a yes-instance.
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A composition algorithm A for a problem is designed to act as a fast
Boolean OR of multiple problem-instances.

It receives as input a sequence of instances.
X = (x1,...,%x¢) with x; € {0, 1}* for i € [t], such that
ki=ky=---=kg=k

It produces as output a yes-instance with a small parameter if and only if
at least one of the instances in the sequences is also a yes-instance.

1% :kO(l)

Running time polynomial in Z;¢ /x4



The Recipe for Hardness

Composition Algorithm + Polynomial Kernel

4
Distillation Algorithm
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The Recipe for Hardness

Composition Algorithm + Polynomial Kernel

4
Distillation Algorithm

U

PH =1}

Theorem. Let (P, k) be a compositional parameterized problem such that
P is NP-complete. If P has a polynomial kernel, then P also has a distil-
lation algorithm.



Transformations
Let (P, k) and (Q,y) be parameterized problems.
We say that there is a polynomial parameter transformation from P to Q if

there exists a polynomial time computable function f : {0, 1}* — {0, 1}*,
and a polynomial p : N — N, such that, if f(x) =y, we have:

x € Pifand only ify € Q,



Transformations
Let (P, k) and (Q,y) be parameterized problems.

We say that there is a polynomial parameter transformation from P to Q if
there exists a polynomial time computable function f : {0, 1}* — {0, 1}*,
and a polynomial p : N — N, such that, if f(x) =y, we have:

x € Pifand only ify € Q,
and

v(y) < plk(x))



Theorem: Suppose P is NP-complete, and Q € NP. If f is a polynomial
time and parameter transformation from P to Q and Q has a polynomial
kernel, then P has a polynomial kernel.



Theorem: Suppose P is NP-complete, and Q € NP. If f is a polynomial
time and parameter transformation from P to Q and Q has a polynomial
kernel, then P has a polynomial kernel.
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Recall

A composition for a parameterized language (Q, k) is required to
“merge” instances

X1,X2y ..y Xty

into a single instance x in polynomial time, such that k(x) is polynomial
in k := k(x4) for any 1i.

The output of the algorithm belongs to(Q, k(x))
if, and only if
there exists at least one i € [t] for which x; € (Q, k).



General Framework For Composition




L doss

General Framework For Composition




A Composition Tree

XA

p(x1,x2)  p(x3,%x4) Xt—3,Xt—2) P(X¢—1,%¢)

General Framework For Composition




Most composition algorithms can be stated
in terms of a single operation, p,

that describes the dynamic programming

over this complete binary tree on t leaves.



Given a CNF formula ¢,
Is there a satisfying assignment of weight at most k?



Weigltea) Stisfmbilly

Is there a satisfying assignment of weight at most k?

When the length of the longest clause is bounded by b,
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Given a CNF formula ¢,
Is there a satisfying assignment of weight at most k?

Parameter: b+k.
When the length of the longest clause is bounded by b,
there is an easy branching algorithm with runtime O(b* - p(n)).
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Input: o7, 2, ..., x¢.

K(ay) =b+ k.

N = maXjec[n] T

Ift > b¥, then solve every o; individually.

Total time < t-t-p(n)

If not, t < b* — this gives us a bound on the number of instances.



Level 1

B1 Vb)) A...A(Bn V by) (B Vo) A...A (B, Vby)

This is the scene at the leaves, where the ;s are the clauses in 4 for
some 1 and the Bj’ s are clauses of o 7.



Level j

B1VB)A...A(Bn VD) BIVB)A...A(BL VD)



(B1 VD) AB2VO) A A(Bn VD) A
(BIVDB)A(BLVE)A...A(BL VD)

B1VB)A...A(Br VD) BIVB)A...A(BL VD)

Take the conjunction of the formulas stored at the child nodes.



(B1VBVb)AB2VOVB)A...A(Bn VbV by)A
(B/VBVb)A(B,VBVDb) AL AL VbV b)

B1VDBIA...A(Bn VD) B/ VD)A...A(B, VD)

if the parent is a “left child”.



(B1VDBVD)AB2VOVDEI)A...A B VbV b)A
(BIVBVb)AB,VEVD)A.. AL VDV b)

O\

B1VB)A...A(Bn VD) B VB)A...A(BL VD)

if the parent is a “right child”.



adding a suffix to “control the weight”

> R

(Eo\/f_)o)
(c1 Vbq)

Co\/bo)/\
C1 Vb] )/\

—_ —

(C'L Vv bl)/\

(i1 Vbi1)

A
A
(et Vb A
A

(-1 Vbiq)



Claim

The composed instance o has a satisfying assignment of weight 2k

—

at least one of the input instances admit a satisfying assignment of
weight k.



Proof of Correctness

../\(O(V(boVb] Yl_)z))/\
...O(\[;bA()Vb1V62...

A

...OC\/POVb]...

>

...Oc\/bo...
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Let Ly be the alphabet consisting of the letters {1,2, ..., k}.

A factor of a word wy - - - Wy € Lf is a substring wy - - - wj € Ly, with
1 <1< j < 1, which starts and ends with the same letter.

123235443513
Disjoint factors do not overlap in the word.
Does the word have all the k factors, mutually disjoint?
Parameter: k
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A k! O(n) algorithm is immediate.
A 2¥ . p(n) algorithm can be obtained by Dynamic Programming.

Let t be the number of instances input to the composition algorithm.
Again, the non-trivial case is when t < 2¥.

Let wi, w3, ..., Wy be words over Lj.



Leaf Nodes

bowibo  bowzbo e bowt_1bo bowibg



Level j.

b]-bj_1ubj_1vbj_1b)-

bj,ﬂibj,] bj,wqu



Claim

The composed word has all the 2k disjoint factors

—

at least one of the input instances has all the k disjoint factors.



Proof of Correctness

byb1bopbogbob1borbesbobibabibowbexbebiboybozbobibz
b2b1bopbogbpbiborbosbobi bz b2b1bowboxbob1boybozbobiby
b1bopbogboby biborbosbob;  bibowboxbob;  bibopybozbob;
bopby bpgby Dborbg bosbg bowbg boxbg boyby bpozbg

Input words: p, q,1,s, W, X, Y, Z.
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[BI5Tb5PbabEbIBETEEsHEBEY  b2b:bowboxbobiboybozbobiba
BiboPboGaboby) BIBGTEESEEBY bibowboxbob:  BIBEPYBEZBEET
b6Pbe BoGby B6TEE BESEE bowbo boxb, ([BEUBE B5Z6EY

Input words: p, q,T,s,W,X,y, 2.



Proof of Correctness

b2b1bopboabebiberbesbobibabibowboxbobiboybozbobiba
BIEESPNGBIBIBEREEEEEBIEY  babibowboxbobiboybozbobi by
BYboPEoGEeDY  BABEEBESEEBE bibowboxbob:  BHBEPUBEZEEET
bopbo  bogbo  borbo  bosbo  bowbo  boxbo  boybo  bozbo

Input words: p, q,T,s,W,X,y, 2.
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nitay- Uit Cls

Input: G = (V, E)
Question: Are there k vertex—disjoint cycles?
Parameter: k.

Related problems:
FVS, has a O(k?) kernel.
Edge-Disjoint Cycles, has a O(k? log” k) kernel.

In contrast, Disjoint Factors transforms into Vertex—Disjoint Cycles in
polynomial time.



w = 1123343422

Disjoint Factors <ppt Disjoint Cycles




w = 1123343422

Claim
w has all k disjoint factors &= G,,, has k vertex—disjoint cycles.
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No polynomial kernel?
Look for the best exponential or subexponential kernels...

.. or build many polynomial kernels.



Many polynomial kernels give us better algorithms:

kZ
()
zklog k

Versus



We say that a subdigraph T of a digraph D is an ous—tree if T is an
oriented tree with only one vertex r of in-degree zero (called the r00z).
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We say that a subdigraph T of a digraph D is an out-branching it T is an
oriented spanning tree with only one vertex r of in-degree zero.

The DirecTED k—LEAF OUT-BRANCHING problem is to find an
out-branching in a given digraph with at least k leaves.

Parameter: k
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RooTED k—LEAF OUT—TREE admits a kernel of size O(k3).

k—Lear Out—TREE does not admit a polynomial kernel (composition via
disjoint union).

However, it clearly admits n polynomial kernels (try all possible choices
for root, and apply the kernel for RooTED k—LEAF OUT-TREE.



(D, k)
// I \
Decompose k-Leaf Out—Tree into n
instances of Rooted k—Leaf Out—Tree

N

(DZvVZak) (D3vv3>k) (DThvnvk)
Apply Kernelization
(Known for Rooted k—Leaf Out-Tree)

(Dé)VZak) (Déav.?uk) (D{I»Vn»k)
\ \ \

Reduce to instances of k—Leaf Out—Branching on Nice Willow Graphs

(Using NP—completeness)

(W2,b2)  (W3,b3) (Whn,bn)



(D, k)
// I \
Decompose k-Leaf Out—Tree into n
instances of Rooted k—Leaf Out—Tree

N

(D],V],k) (DZvVZak) (D3vv3>k) (DThvnvk)
Apply Kernelization
(Known for Rooted k—Leaf Out-Tree)

(D{)\”)k) (Dé)VZak) (Déav.?uk) (D{I»Vn»k)
\ \ \ |
Reduce to instances of k—Leaf Out—Branching on Nice Willow Graphs

(Using NP—completeness)

(Wl ,bmax) (WZ) bmax) (WS» bmax) Tt (WTL) bmax)



Composition
(produces an instance of k—Leaf Out Branching)

(D/)bmax + 1)

Kernelization
(Given By Assumption)
(D //‘ k// )

\

NP-completeness reduction from k—Leaf Out Branching
to k—Leaf Out Tree)

(D*, k*)



A polynomial pseudo—kernelization K pro-
duces kernels whose size can be bounded by:

h(k) -n'"¢

where k is the parameter of the problem,
and h is polynomial.

CONCLUDING
REMARKS




Analogous to the composition framework,
there are algorithms (called Linear OR)
whose existence helps us rule out polynomial
pseudo—kernels.

CONCLUDING
REMARKS




Analogous to the composition framework,
there are algorithms (called Linear OR)
whose existence helps us rule out polynomial
pseudo—kernels.

Most compositional algorithms can be ex-
tended to fit the definition of Linear OR.
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A strong kernel is one where the parameter
of the kernelized instance is at most the pa-
rameter of the original instance.

Mechanisms for ruling out strong kernels are
simpler and rely on self-reductions and the
hypothesis that P # NP.

Example: k-Path is not likely to admit a
strong kernel.

CONCLUDING
REMARKS




There are no known ways of inferring that a problem is unlikely to have a

kernel of size k¢ for some specific c.

Cpes Fobless




Can lower bound theorems be proved under some “well-believed”

conjectures of parameterized complexity - for instance - FPT # XP, or,

FPT # W(t] for somet € N*?

Cpes Fobless




A lower bound framework for ruling out p(k) - f(1)—sized kernels for
problems with two parameters (k, 1) would be useful.

Cpes Fobless



“Many polynomial kernels” have been found only for the directed
outbranching problem. It would be interesting to apply the technique to

other problems that are not expected to have polynomial—sized kernels.

Cpes Fobless




FIN




