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Abstract

According to the classical Erdős–Pósa theorem, given a positive integer
k, every graph G either contains k vertex disjoint cycles or a set of at most
O(k log k) vertices that hits all its cycles. Robertson and Seymour [Graph
minors. V. Excluding a planar graph. J. Comb. Theory Series B, 41:92–114,
1986] generalized this result in the best possible way. More specifically, they
showed that if H is the class of all graphs that can be contracted to a fixed
planar graph H, then every graph G either contains a set of k vertex-disjoint
subgraphs of G, such that each of these subgraphs is isomorphic to some
graph in H or there exists a set S of at most f(k) vertices such that G \ S
contains no subgraph isomorphic to any graph in H. However the function
f is exponential. In this note, we prove that this function becomes quadratic
when H consists all graphs that can be contracted to a fixed planar graph
θc. For a fixed c, θc is the graph with two vertices and c ≥ 1 parallel edges.
Observe that for c = 2 this corresponds to classical Erdős–Pósa theorem.

1 Introduction

Given a graph G we denote by V (G) and E(G) its vertex and edge set respectively.
Let G be a graph, and let H be a class of graphs. The H-PACKING problem asks
for a set of vertex-disjoint subgraphs of G, called an H-packing, such that each
of these subgraphs is isomorphic to some graph in H. A related problem is the
H-COVERING problem, where the question is to find a set S ⊆ V (G) of vertices,
an H-cover, such that G \ S contains no subgraph isomorphic to any graph in H.
The class H is said to have the Erdős-Pósa property for some graph class G if there
exists a function f : N → N such that, for every k ≥ 0, every graph G ∈ G either
contains an H-packing of size at least k, or has an H-cover of size at most f (k).
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Erdős and Pósa [7] proved that the Erdős-Pósa property holds for all graphs
when H is the class of all cycles. The problem of identifying more general graph
classes where the Erdős-Pósa property is satisfied has attracted a lot of atten-
tion [2,4,11,13,17,18]. Extensions of this problem defined on matroids have also
been investigated [9,10].

The operation of contracting an edge e = (u, v) in a graph G results in a graph
G′, in which u and v are replaced by a new vertex ve and in which for every
neighbour w of u or v in G, there is an edge (w, ve) in G′. We say that a graph G
can be contracted to a graph H if H can be obtained from G by a series of edge
contractions . We say that H is a minor of G if some subgraph G̃ of G can be
contracted to H; such a G̃ is called an H-minor model of G. A graph class G is
minor-closed if any minor of a graph in G is again a member of G.

For H a fixed connected graph, the class H = MH consists of graphs that
contain H as a minor. For a fixed c, let θc be the graph with two vertices and c ≥ 1
parallel edges. Observe that for H = θ1, and H = θ2, H = MH consists of all
graphs that contain at least one edge and all graphs that contain at least one cycle,
respectively. Robertson and Seymour [15, Proposition 8.2] proved the following
seminal result.

Proposition 1. Let H be a connected graph. Then MH satisfies the Erdős-Pósa
property for all graphs if and only if H is planar.

For an alternate proof of Proposition 1, see the monograph “Graph Theory” by
R. Diestel [5, Corollary 12.4.10 and Exercise 39] . The bounding function f(k) in
the Erdős-Pósa property, as obtained in the proof of Proposition 1, is exponential
in k. Fomin et al. [8] showed that the bound becomes linear for any planar graph
H when the graph class G is any non trivial minor-closed class. However, by the
classical result of Erdős-Pósa [7], the class H =Mθ2 has the Erdős-Pósa property
with f(k) = O(k log k) when G is the set of all graphs. In this note we prove a
quadratic bound for the case when G consists of all graphs and H consists of all
graphs which can be contracted to a fixed planar graph θc. Observe that for c = 2
this corresponds to classical Erdős–Pósa theorem, albeit with a larger bound. The
main result of this paper is:

Theorem 1. [Erdős-Pósa property for θc] For any fixed c ∈ N, every graph G either
contains k vertex-disjoint θc-minor models, or has a θc-hitting-set of size at most
f(k) = O(k2).

Given a graph G and a vertex subset S ⊆ V (G), we call a set S a θc-hitting set
if G \ S does not contain θc as a minor. In the rest of this note we use the term
“hitting set” to refer to a θc-hitting set.

2 The Erdős-Pósa Property for θc

In this section we give the proof of Theorem 1. Towards this we need following
definitions.
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LetG be a graph. A tree decomposition of a graphG is a pair (T,X = {Xt}t∈V (T ))
such that

• ∪t∈V (T )Xt = V (G),
• for every edge (x, y) ∈ E(G) there is a t ∈ V (T ) such that x, y ⊆ Xt, and
• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt}

is connected.

The width of a tree decomposition is
(
maxt∈V (T ) |Xt|

)
− 1 and the treewidth of

G is the minimum width over all tree decompositions of G. A tree decomposition
(T,X ) is called a nice tree decomposition if T is a tree rooted at some node r where
Xr = ∅, each node of T has at most two children, and each node is of one of the
following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and
|Xt| = |Xt′ |+ 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| =
|Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .
4. Base node: a node t that is a leaf of t, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget
node or a join node. It is well known that any tree decomposition of G can be
transformed into a nice tree decomposition in time O(|V (G)|+ |E(G)|) maintain-
ing the same width [12]. We use Gt to denote the graph induced on the vertices
∪t′X ′t, where t′ ranges over all descendants of t, including t. We use Ht to denote
Gt[V (Gt) \Xt].

We prove Theorem 1 by establishing the following two lemmas.

Lemma 1. If the treewidth of a graph G is at least 2c2k2, then G contains at least k
vertex-disjoint θc-minor-models.

Lemma 2. If the treewidth of G is at most 2c2k2 and G does not contain k vertex-
disjoint θc-minor-models, then G contains a θc-hitting set of size at most ηk2 =
O(k2), where the constant η depends only on c.

The proof of Theorem 1 follows from the above two lemmas.

Proof of Theorem 1. Suppose graph G does not contain k vertex-disjoint θc-minor-
models. Then by Lemma 1, G has treewidth at most 2c2k2. Now by applying
Lemma 2, we have that G contains a θc-hitting set of size O(k2).

We now define some terms which we use in the proof of Lemma 1. A bramble is
a set of connected subgraphs, called the elements of the bramble, any two of which
either intersect or are linked by at least one edge. A hitting set of a bramble is a
set of vertices which meets every element of the bramble. The order of a bramble
is the minimum cardinality of a hitting set of the bramble. The maximum order
of a bramble in a graph is its bramble number. Brambles and tree decompositions
are dual structures in the following sense.
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Proposition 2. [16] The tree-width of any graph is exactly one less than its bramble
number.

Our proof of Lemma 1 uses some ideas from the proof of Lemma 3.2 in Wood and
Reed’s recent work [14] on grid-like minors.

Lemma 3. [3] Let B be a bramble in a graph G. Then G contains a path that
intersects every element of B.

Now we are ready to give a proof of Lemma 1.

Proof of Lemma 1. We show that if the treewidth of a graph G is at least 2c2k2,
then G contains at least k vertex-disjoint θc-minor-models. If the treewidth of G
is at least 2c2k2, then by Proposition 2, G contains a bramble (call it B) of order
at least 2c2k2 + 1. By Lemma 3, there exists a path that visits every element of
the bramble at least once. Let P be such a path, and let v1, . . . , vt be the vertices
of P (stated in the order of their appearance in P ). Note that t ≥ 2c2k2 + 1, as
otherwise P would be a hitting set of B with fewer vertices than the order of B.

For 1 ≤ i ≤ t, let Bi denote the set of all elements of B which contain the
vertex vi. Note that for 1 ≤ i ≤ t, ∪ij=1Bj is a bramble. Let Oi denote the order of
this bramble. Let s be the smallest number such that Os = c2k2. The existence of
such s is guaranteed by the fact that O1 = 1, Ot > 2c2k2, and for 1 ≤ i ≤ t − 1,
Oi+1 ≤ Oi + 1. Let B1 = ∪si=1Bi, and let B2 = B \ B1. Since the value of Oi
increases by at most one in a single step, we have that the order of B2 is at least
c2k2, or else the union of the smallest hitting sets for B1 and for B2 would be a
hitting set of B which has fewer vertices than the order of B. Let P1 be the sub-
path of P starting at v1 and ending at vs, and P2 the subpath starting at vs+1 and
ending at vt. By the above argument, P1 and P2 contain at least c2k2 vertices each.

Now, there must exist a collection, say P, of at least c2k2 vertex-disjoint paths
that begin in P1 and end in P2. If not, then by Menger’s theorem, there exists a
P1–P2 separator, say S, of size less than c2k2. Note that S cannot be a hitting set
of the brambles B1 or B2, since the order of each of these is at least c2k2. So there
exist elements A ∈ B1, B ∈ B2 such that A ∩ S = ∅ = B ∩ S. But since A and B
are connected subgraphs which either intersect or are linked by an edge — being
elements of B — and A ∩ P1 6= ∅, B ∩ P2 6= ∅, S cannot be a P1–P2 separator.

We now show that P ∪P1 ∪P2 contains k vertex-disjoint θc minor-models. Let
Ep be the set of vertices that form the end points (on P1 and P2) of the paths in
P. For i ∈ {1, 2}, let Qi = Pi∩Ep. We label both Q1 and Q2 with a common index
set [M ], where M = |Q1| = |Q2|. Let f : [M ] → [M ] be the following bijection:
f(i) = j if and only if there is a path in P that begins in i and ends in j. We say
that a subset of paths C ⊆ P is cross-free under this labeling if there does not exist
i, i′ ∈ Q1 ∩ C; i < i′ and f(i) > f(i′).

Note that since the paths in P are vertex-disjoint, the numbers f(1), f(2), . . .,
f(M) form a permutation of M , and by the Erdős-Szekeres Theorem [6], the se-
quence 〈f(1), f(2), . . . , f(M)〉 contains a monotonically increasing or decreasing
subsequence of length at least t, where t is

√
|M | = ck. Let a witness subsequence
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be 〈f(s1), f(s2), . . . , f(st)〉. Let Q′1 = {s1, s2, . . . , st} and Q′2 = {f(s1), f(s2), . . . ,
f(st)}. Then the paths in P that have their end points in Q′1, Q

′
2 form a cross-free

collection. These paths together with P1, P2 contain at least k vertex-disjoint θc
minor-models.

We first define the notion of a good labeling function. Given a nice tree decom-
position (T,X = {Xt}t∈V (T )) of a graph G, a function g : V (T ) → N is called a
good labeling function if it satisfies the following properties:

• if t is a base node then g(t) = 0;

• if t is an introduce node, then g(t) = g(s), where s is the child of t;

• if t is a join node, then g(t) = g(s1)+ g(s2), where s1 and s2 are the children
of t; and

• if t is a forget node, then g(t) ∈ {g(s), g(s) + 1}, where s is the child of t.

A max labeling function g is defined analogously to a good labeling function,
the only difference being that for a join node t, we have the condition g(t) =
max{g(s1), g(s2)}. Now we are ready to prove the covering lemma—Lemma 2.

Proof of Lemma 2. In this section, we show that if G has treewidth at most 2c2k2

and does not have more than k′ = k − 1 disjoint minor-models of θc, then there
exists a set S ⊆ V (G), |S| = O(k2), such that G\S does not contain θc as a minor.

Consider a nice tree decomposition (T,X = {Xt}t∈V (T )) of the graph of width
at most 2c2k2. Recall that for t ∈ V (T ), Gt is the graph induced on the vertices
∪t′Xt′ , where t′ ranges over all descendants of t including t, and Ht is Gt \Xt.

Let Pθc(G) denote the maximum number of vertex-disjoint θc minor models
in G. Note that Pθc(G) ≤ k′. In our discussion, we abuse notation and use k′

to denote Pθc(G). Consider the function µ : V (T ) → [k′], defined as follows:
µ(t) = Pθc(Ht). The function µ is a good labeling function because:

• If t is a base node then µ(t) = 0 as Ht is an empty graph.

• If t is an introduce node, then µ(t) = µ(s), where s is the child of t. Indeed,
this follows from the fact that the graphs Ht and Hs are exactly the same.

• If t is a join node, then µ(t) = µ(s1)+µ(s2), where s1 and s2 are the children
of t. This follows from the fact that the bag Xt is a separator of Gt and
V (Hs1) ∩ V (Hs2) = ∅.

• If t is a forget node, then µ(t) ∈ {µ(s), µ(s) + 1}, where s is the child of t.
This is because Ht has at most one vertex more than Hs, which can add at
most one to the number of vertex-disjoint θc minor models. the root r is φ,
we have that µ(r) = k′.

By definition, and by the convention that the bag Xr corresponding to the root r
is φ we have that µ(r) = k′. To find the desired θc-hitting set we give a recursive
algorithm. We find a bag X in the given tree decomposition such that its removal
allows us to decompose the graph into two parts such that there are no edges
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Algorithm 1 HIT-SET(G)
1: Compute (T,X = {Xt}t∈V (T )), a nice tree decomposition of G. Now compute

the function µ : V (T )→ [k′], defined as follows: µ(t) = Pθc(Ht).
2: if (µ(r) = 0) then
3: Return ∅.
4: else
5: Find the partitioning of the vertex set V (G) into V1, V2 and X (a bag corre-

sponding to a node in T ) as described in Cases 1 and 2.
6: end if
7: Return

(
X
⋃

HIT-SET(G[V1])
⋃

HIT-SET(G[V2])
)
.

from one part to another and the number of vertex-disjoint minor-models of θc
in each part is essentially a constant fraction of the original. After this we find a
hitting set in each of these graphs and then take the union of these sets, together
with the bag we removed to get these graphs, to get the desired hitting set for the
whole graph. Let t ∈ V (T ) be the node where µ(t) > 2k′/3 and for each child t′

of t, µ(t′) ≤ 2k′/3. From the above observations, this node exists and is unique
provided that k′ > 0. Moreover, observe that t could either be a forget node or a
join node. We distinguish these two cases.

• Case 1. If t is a forget node, we set V1 = V (Ht′) and V2 = V (G) \ (V1 ∪Xt′)
and observe that Pθc(G[Vi]) ≤ b2k′/3c, i = 1, 2. Also we set X = Xt′ .

• Case 2. If t is a join node with children t1 and t2, we have that µ(ti) ≤
2k′/3, i = 1, 2. However, as µ(t1) + µ(t2) > 2k′/3, we also have that either
µ(t1) ≥ k′/3 or µ(t2) ≥ k′/3. Without loss of generality we assume that
µ(t1) ≥ k′/3 and we set V1 = V (Ht1), V2 = V (G) \ (V1 ∪Xt1) and X = Xt1 .

We present a detailed algorithm to find a hitting set in Algorithm 1. The
algorithm HIT-SET(G) takes as input a graph G and returns a θc-hitting set for
G. Now we bound the size of the hitting set returned by the algorithm. Let
S(G,Pθc(G)) ≤ S(G, k′) be the size of the hitting set returned by HIT-SET(G).
Then the value of S(G,Pθc(G)) is upper bounded by the following recurrence:

S(G, k′ = k − 1) ≤ max
1/3≤α≤2/3

{
S(G[V1], αk′) + S(G[V2], (1− α)k′) + 2c2k2

}
.

Note that Pθc(G[V1])+Pθc(G[V2]) ≤ 2Pθc(G)/3. It is easy to see that the above
recurrence solves to O(k2) using Akra-Bazzi Theorem [1]. This concludes the
proof.

3 Conclusion

In this short note we obtained a polynomial upper bound on the Erdős-Pósa prop-
erty of a generalization of packing and covering cycles. An interesting question
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will be to classify those planar graphs H, such thatMH has Erdős-Pósa property
with a polynomial function on all graphs.
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erty for long circuits. Combinatorica, 27(2):135–145, 2007.
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