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G is a bipartite graph with maximum degree  and M is a multiset over
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Finding and Counting Vertex-Colored Subtrees.
Sylvain Guillemot and Florian Sikora.

In MFCS .

A O∗(2|M|) algorithm.
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No polynomial kernels¹.

¹Unless CoNP ⊆ NP/poly
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We get n kernels of size O(k2) each.
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observation?
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S C M does not admit a polynomial kernel on trees.
“Fixing” a constant subset of vertices does not help either.
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A framework for ruling out the possibility of many polynomial kernels?
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Catterpillars: Polynomial time.
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Lobsters: NP-hard even when...
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...restricted to “superstar graphs”.
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“Hardness” on general graphs → “Hardness” on graphs of diameter
three.

NP-hardness

NP-hardness and infeasibility of obtaining polynomial kernels
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Polynomial kernels for graphs of diameter two? For superstars?
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Colorful Motifs on graphs of diameter two↓
Connected Dominating Set on graphs of diameter two
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Concluding Remarks

is was an advertisement for C M.

We wish to propose that it may be a popular choice as a problem to
reduce from, for showing hardness of polynomial kernelization, and even
NP-hardness, for graph problems that have a connectivity requirement

from the solution.
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Concluding Remarks

Several open questions in the context of kernelization for the colorful
motifs problem alone, and also for closely related problems.



Concluding Remarks

When we encounter hardness, we are compelled to look out for other
parameters for improving the situation. ere is plenty of opportunity
for creativity: finding parameters that are sensible in practice and useful

for algorithms.



Thank you!


